630 research outputs found

    The statistical mechanics of multi-index matching problems with site disorder

    Get PDF
    We study the statistical mechanics of multi-index matching problems where the quenched disorder is a geometric site disorder rather than a link disorder. A recently developed functional formalism is exploited which yields exact results in the finite temperature thermodynamic limit. Particular attention is paid to the zero temperature limit of maximal matching problems where the method allows us to obtain the average value of the optimal match and also sheds light on the algorithmic heuristics leading to that optimal matchComment: 11 pages 11 figures, RevTe

    The field theoretic derivation of the contact value theorem in planar geometries and its modification by the Casimir effect

    Full text link
    The contact value theorem for Coulomb gases in planar or film-like geometries is derived using a Hamiltonian field theoretic representation of the system. The case where the film is enclosed by a material of different dielectric constant to that of the film is shown to contain an additional Casimir-like term which is generated by fluctuations of the electric potential about its mean-field value.Comment: Link between Sine-Gordon and Coulomb gas pressures via subtraction of self interaction terms included. Discussion of results within Debye-Huckel approximation included. Added reference

    Phase transitions in the steady state behavior of mechanically perturbed spin glasses and ferromagnets

    Full text link
    We analyze the steady state regime of systems interpolating between spin glasses and ferromagnets under a tapping dynamics recently introduced by analogy with the dynamics of mechanically perturbed granular media. A crossover from a second order to first order ferromagnetic transition as a function of the spin coupling distribution is found. The flat measure over blocked states introduced by Edwards for granular media is used to explain this scenario. Annealed calculations of the Edwards entropy are shown to qualitatively explain the nature of the phase transitions. A Monte-Carlo construction of the Edwards measure confirms that this explanation is also quantitatively accurate

    Steady State Behavior of Mechanically Perturbed Spin Glasses and Ferromagnets

    Full text link
    A zero temperature dynamics of Ising spin glasses and ferromagnets on random graphs of finite connectivity is considered, like granular media these systems have an extensive entropy of metastable states. We consider the problem of what energy a randomly prepared spin system falls to before becoming stuck in a metastable state. We then introduce a tapping mechanism, analogous to that of real experiments on granular media, this tapping, corresponding to flipping simultaneously any spin with probability pp, leads to stationary regime with a steady state energy E(p)E(p). We explicitly solve this problem for the one dimensional ferromagnet and ±J\pm J spin glass and carry out extensive numerical simulations for spin systems of higher connectivity. The link with the density of metastable states at fixed energy and the idea of Edwards that one may construct a thermodynamics with a flat measure over metastable states is discussed. In addition our simulations on the ferromagnetic systems reveal a novel first order transition, whereas the usual thermodynamic transition on these graphs is second order.Comment: 11 pages, 7 figure

    Non-linear Response of the trap model in the aging regime : Exact results in the strong disorder limit

    Full text link
    We study the dynamics of the one dimensional disordered trap model presenting a broad distribution of trapping times p(τ)1/τ1+μp(\tau) \sim 1/\tau^{1+\mu}, when an external force is applied from the very beginning at t=0t=0, or only after a waiting time twt_w, in the linear as well as in the non-linear response regime. Using a real-space renormalization procedure that becomes exact in the limit of strong disorder μ0\mu \to 0, we obtain explicit results for many observables, such as the diffusion front, the mean position, the thermal width, the localization parameters and the two-particle correlation function. In particular, the scaling functions for these observables give access to the complete interpolation between the unbiased case and the directed case. Finally, we discuss in details the various regimes that exist for the averaged position in terms of the two times and the external field.Comment: 27 pages, 1 eps figur

    Exact Asymptotic Results for Persistence in the Sinai Model with Arbitrary Drift

    Full text link
    We obtain exact asymptotic results for the disorder averaged persistence of a Brownian particle moving in a biased Sinai landscape. We employ a new method that maps the problem of computing the persistence to the problem of finding the energy spectrum of a single particle quantum Hamiltonian, which can be subsequently found. Our method allows us analytical access to arbitrary values of the drift (bias), thus going beyond the previous methods which provide results only in the limit of vanishing drift. We show that on varying the drift, the persistence displays a variety of rich asymptotic behaviors including, in particular, interesting qualitative changes at some special values of the drift.Comment: 17 pages, two eps figures (included

    The mean field theory of spin glasses: the heuristic replica approach and recent rigorous results

    Full text link
    The mathematically correct computation of the spin glasses free energy in the infinite range limit crowns 25 years of mathematic efforts in solving this model. The exact solution of the model was found many years ago by using a heuristic approach; the results coming from the heuristic approach were crucial in deriving the mathematical results. The mathematical tools used in the rigorous approach are quite different from those of the heuristic approach. In this note we will review the heuristic approach to spin glasses in the light of the rigorous results; we will also discuss some conjectures that may be useful to derive the solution of the model in an alternative way.Comment: 12 pages, 1 figure; lecture at the Flato Colloquia Day, Thursday 27 November, 200

    Exact Occupation Time Distribution in a Non-Markovian Sequence and Its Relation to Spin Glass Models

    Full text link
    We compute exactly the distribution of the occupation time in a discrete {\em non-Markovian} toy sequence which appears in various physical contexts such as the diffusion processes and Ising spin glass chains. The non-Markovian property makes the results nontrivial even for this toy sequence. The distribution is shown to have non-Gaussian tails characterized by a nontrivial large deviation function which is computed explicitly. An exact mapping of this sequence to an Ising spin glass chain via a gauge transformation raises an interesting new question for a generic finite sized spin glass model: at a given temperature, what is the distribution (over disorder) of the thermally averaged number of spins that are aligned to their local fields? We show that this distribution remains nontrivial even at infinite temperature and can be computed explicitly in few cases such as in the Sherrington-Kirkpatrick model with Gaussian disorder.Comment: 10 pages Revtex (two-column), 1 eps figure (included

    Glassy dynamics in granular compaction: sand on random graphs

    Full text link
    We discuss the use of a ferromagnetic spin model on a random graph to model granular compaction. A multi-spin interaction is used to capture the competition between local and global satisfaction of constraints characteristic for geometric frustration. We define an athermal dynamics designed to model repeated taps of a given strength. Amplitude cycling and the effect of permanently constraining a subset of the spins at a given amplitude is discussed. Finally we check the validity of Edwards' hypothesis for the athermal tapping dynamics.Comment: 13 pages Revtex, minor changes, to appear in PR

    Thermodynamics and statistical mechanics of frozen systems in inherent states

    Full text link
    We discuss a Statistical Mechanics approach in the manner of Edwards to the ``inherent states'' (defined as the stable configurations in the potential energy landscape) of glassy systems and granular materials. We show that at stationarity the inherent states are distributed according a generalized Gibbs measure obtained assuming the validity of the principle of maximum entropy, under suitable constraints. In particular we consider three lattice models (a diluted Spin Glass, a monodisperse hard-sphere system under gravity and a hard-sphere binary mixture under gravity) undergoing a schematic ``tap dynamics'', showing via Monte Carlo calculations that the time average of macroscopic quantities over the tap dynamics and over such a generalized distribution coincide. We also discuss about the general validity of this approach to non thermal systems.Comment: 10 pages, 16 figure
    corecore